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ABSTRACT

We describe numerical computations on the Connection Machine, a

massively parallel hypercube architecture with 65,536 single-bit proxx-

sors and 32 Mbytes of mcmo~. A parallel extension of COMMON

LISP, provides access to the processors and network. The rich software

environment is further enhanced by a powerful virtual processor capabil-

ity, which extends the degree of fine-grained parallelism beyond

1,000,000.

We briefly describe the hardware and indicate the principal features

of the parallel progr amming environment. We then present implementa-

tions of SOR, multigrid and pre-conditioned conjugate gradient algo-

rithms for solving partial differential equations on the Connection

Machine. Despite the lack of floating point hardware, cmnputation rates

above 100 mcgafiops have been achieved in PDE solution, Virtual pro-

cessors prove to be a real advantage, easing the effofi of software

development while improving system performance significantly, The

software development effort is also facilitated by the fact that hypercube

communications prove to be fast and essentially independent of distance.

1. For prcscrrratimr IO tic 2rMl uxrfcrcncc on Hypcrtwbc Muldproccssnrs, Krmvillc, OcI 1, 1966,
2. Supporlcd h pul by ME conrracl DE-ACC)2-76ER03077.
3, Suppmcd h part by NSF grsm DMS-R3-12229.
4, Pcrmancnl address: Ctmrahl Inslllurc of M~thcmaticsl Scicnccs, Ncw York Univcrshy, Ncw York,
N,Y. 10012.
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L Introduction

This paper is part of an ongoing effort to exploit parallelism in the solution of

equations arising in Computational Fluid Dynamics. We have previously presented

implementations of conjugate gradient and multigrid solvers on other parallel architec-

tures, including the Denelcor HEP shared memory computer[ 1,2,3,4,5, 6], the 32 pro-

cessor CMtech Mark 11 Hypercube and the Intel iPSC d7 processor, a 128 processor

Hypercube[7, S,9,10, 11]. We have also developed an extensive portable linear algeb-

ra package for such systems, see[ 10, 11]. The current work extends these studies to

the range of massively parallel architectures, beginning with the Connection Machine,

a 65,536 processor hypercube architecture. The Connection Machine (CM in the

sequel) is different from other architectures we have worked with in several respects,

We will discuss some of these differences in this introduction, For a more complete

discussion of the Connection Machine, and of the implementation of numerical algo-

rithms on the machine, we refer to our paper[ 12],

Most significantly, the CM is a massively parallel machine. The CM therefore

requires that applications be decomposed at a very fine level, presenting an interesting

challenge in implementing applications, The CM processors are simple one-bit

1, For prcscrstation 10 the 2nd confcrcncc on Hypcrcubc Mrsltipmccssors, Knoxville, (kt 1, 1986,

2 Supportcrl in pnrt by IWE contract DE-AC0276ER03077,

3 Supporlcd in pun by NSF grnnt DMS.83-12221J,

4, Pcrmuncnl address: Couran( Instihstc O( Mathematical Scicnccs, Ncw York University, Ncw York,

NY, 10012,
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proccssors, Floating point opermons, which arc supported in micro-code, consume

many (up to 1,000) machine cycles, with resulting floating point perfommnce on the

order of 1 kflops per processor. Despite this, peak rates of 120 Mflops have been

attained on 32-bit vector operations using 64k processors, demonstrating the power

achievable with massive parallelism. Each processor is associated with only 512 bytes

of memory. This is compatible with the fine-grained parallelism, although it ensures

that inter-processor communication is required more frequently on the CM than on

coarser-grained machines, Fortunately communication on the CM is fast and has

minimal communication startup cost.

The CM is an SIMD machine rather than the MIMD architecture of other hyper-

cubes. While all processors receive identical insuuctions on each cycle, some proces-

sors may choose to ignore an instruction, depending on the setting of an internal flag.

Logical expressions are implemented using this facility, although some care is rquired

as each nested binaxy branch will incur an effective increase in execution time for the

expression of a factor of 2.

The current CM software environment is entirely LISP based, with the standard

programming language being *LISP, a parallel extension of COMMON LISP, The

powerful user-friendly toftware environment of the CM is unique among cument paral-

lel processors. Support for parallelism is fully integrated into the programming

language, To a large extent the message passing characteristics of the hypercube net-

work are hidden from the programmer, The system provides support for distributed

data types and has facilities for parallel global memory reference.

A final feature of the CM architecture is the possibility of using virruul pro~es-

sors, extending the apparent degree of parallelism to over a million, Virtual processors

~rforrn more slowly and with Icss local memory than physical processors, but total

mtichine throughput may actually be increased, The ability to program complex appli -

ctitions in terms of very fine-grain parallelism should not be undcrcstimiitcd, Wc
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illustrate with the example of a typical grid-based computation. On medium-scale

machines, it is necessi~ to perform two independent decompositions of data and asso-

ciated code. First, the data is broken into blocks of grid points, with one block associ-

ated to each proce’ ser. Within each processor a further decomposition is required

down to the single point level, On the CM, with up to a million

one can generally avoid the first step entirely.

For the rationale behind the CM design see the book by Hillis[

hual processors,

3], Further infor-

mation on the CM architecture is available in documents from Thinking Machines Cor-

poration, for example[ 14].

Sections 2 and 3 introduce the CM hardware and software in more detail. Sec-

tions 4 and 5 describe the implementation of the multignd and conjugate gradient algo-

rithms on the CM, while section 6 presents performance measurements for the CM in

PDE solution,

2. Connection Machine Hardware

The CM is accessed through a standard architecture front end computer, currently

the Symbolics 3600, though a VAX interface is about to be released. Connection

machine programs contain two types cf statements - those operating on single data

items, which are executed in the front end, and those operating on whole data sets

which are executed in the CM, *LISP instructions for the CM are sent first to a

micro-controller which expands them into a series of machine instructions, Floating

point instructions are expanded in this way.

The CM consists of 4096 chips, ench with 16 processors plus associated memory,

for a total of 65536 processor:;, The chips form a 12 dimensional hypercube, Within

each chip the processors are fully connected, Each chip also has a muter module, u

communication processor that allows arly on-chip processor to communicate with any

remote processor,
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In addition to the router hypercube network there is a separate communication

facility callrd the NEWS grid. Each processor is wired to its four nearest neighbom in

a two-dimensional rectangular grid, Communication on the NEWS grid is extremely

fast and is encouraged for those processes that can avail of the limited interconnections

involved. Long range communication, even on a grid, is best done however with the

router sys:cm.

An impatant feature of the CM system is support for virtual processors. The

user may specify that each physical processor is to simulate a small rectangular array

of virtual processors. The cumnt machine provides up to 1,048,576 virtual processors.

All system facilities are transparent to virtual processes, except that such processors

appear to be correspondingly slower and have only a fraction of the 512 bytes of

memory of a physical processor. The NEWS grid and hypercube communication facil-

ities are supported between arbitrary virtual processors.

3, The CM Programming Environment

The programming languages available on the CM are a parallel extension of

COMMON LISP, called *LISP, and an assembly language called PARIS. For a com-

plete description of COMMON LISP see the book by Steele[ 15]. For fuflher details of

the *LISP language see the Thinking Machine Corporation’s *LISP manual[ 161.

*LISP is an extension to COMMON LISP that includes facilities for utilizing

parallelism, The primary data extension is the concept of a pm, or parallel variable.

pVdrS are defined using the *defiur function, in the same way as defvar is used for

defining ordina~ LISP variables. A pvar can be thought of as a sequence of ordinary

LISP variables, one per processor, Parallel constants arc supported with a special

function “!!“: if c is a LISP object, then ( !! c ) returns a pvar which contains the

valuc c in every processor, Piir;dlel versions of many standard LISP operatom are

defined, typicully with !! appende(l to the LISP name, For example:
/
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(@!! (!! 2) p )

applies the parallel multiply operation ●!! to the constant pvar (!! 2 ) and the pvarp,

Similarly there arc parallel versions of logical operators such as <!! , and!! , and so

on.

Logical and looping constructs parallel those in LISP and ITIllowan operation to

be pcrfomcd over any subset of processors. This selection mechanism is very power-

ful and is a primaq mechanism for providing non-homogeneous SW instructions.

Selection *oPing is block structured.

Since pvars arc distributed across the CM, it is essential to be able to locate

neighboring elements of a pvar, and to communicate in parallel with other pmccssors.

TM is accomplished by a set of pvar functions which provide pamllel global memory

rcfemnces. processor addressing in these functions may be either absolute or relative,

and may be pcrkrmcd using either grid or hypercubc indexing.

4. ?arallel Multigrld

The basic multigrid idea[17,18, 19,20,21,22,7] involves two aspects - the usc of

relaxation methods to dampen high-frequency mom and the usc cf multiple grids to

allow Iow-fkcquencies to be relaxed inexpensively. For the Comcction Machine, there

is an important difference in approach fi’omthat on other parallel machines. The CM

has only 512 bytes of memo~ per processor, which means that it is not possible to

store a substantial subgrid of points perprocessor as was done in our other implemen-

tations[7]. Instead, we have chosen to auign only one grid point per processor. This

may seem wasteful of memory, but is not really so bccam of the CM’s virtual pro-

cessor ability. By using sufficiently many virtual processors ad memory may be fully

utilized.

In our multigrid implementation, the coarse grid points arc always assigned to the

same processor M tbcir cmrcsponding fine grid pints, Because of memory Iimittitions
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this implies a restriction on the number of multigrid levels that can be accommodated.

When relaxation is performed on coarse grids, most processors are idle. As a resul~

V-cycles are more favored than W-cycles on the CM, and multignd iterations with

more than about 5 levels are also undesirable. This is borne out by our experiments

presented in the results section.

We have used parallel versions of modified Jacobi relaxation and of red-black

Gauss-Seidel relaxation. There is little obvious advantage to using red-black relaxation

on the CM since it requires 2 successive sweeps edch involving only half of the grid

points. Consequently half of the processors are unused at any time. Thus the kncwn

improved convergence rate of red-black Gauss-Seidel iteration, which is twice as fast

for the Poisson Equation, is canceled by the 50% reduction in attainable CM uti.liza-

ticm. We note however that if 2 or more virtual processors are used per physical pro-

cessor, then this disadvantage disappears - all of the physical processors may remain

active at all times. We also note that with one grid point p processor, and a com-
d

pletely parallel execution, lexicographic Gauss-Seidel relaxation reduces to ordinary

Jacobi relaxation.

We accomplish the dktribut.ion of data to various grid levels, by representing the

solution, error, and right-hand-side on each grid level as a *LISP pvar. In pficular

the hypcube is organized as a rectangular mesh of virtual processors, Each grid is

associated with a selection pvar called &muin which is simply a 1-bit pvar initialized

to be tme at all virtual processors that contain a grid point of that grid, and false else-

where, Relaxation is performed only for domain points for that grid, The same

mechanism allows irregular recumgular grids to be handled as easily as regular grids.

The fine-grid residual equation is projected to thr coarse grid using full injection

in the modified Jacobi case or half-injection in the red-black Gauss-Seidel case, As

discussed previously, no communication is involved here since the relevimt fine-grid

~mint is in t!~esumc processor us the target coarse-gtid point.
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To control termination of iteration, norms of error values or residuals need to be

calculated. These are evaluated by using the *LISP function *SUMwhich rree-sums

the elements of a pvar over a set of processors. In terms of *sum we can define a

norm-vector function, to evaluate the norm of a vector stored as a pvar on an arbitrary

subset of processors, again specified by selection.

Havifig solved the emor quation on the coarse grid, the solution on the he grid

has to be updated by addition of a suitable interpolation of the computed coarse grid

error. We have used linear interpolation at this point. This step does involve com-

munication, in fact over long distances in the case of very coarse grids, in which case

hypercube communication clmnnels are used.

5. Parallel Coq”ugate Gradient

Discretization of elliptic partial differential quations by finite element or finite

difference methods leads to systems of equations with sparse coefficient matrices. The

parallel conjugate gradient method we have developed on the CM, solves systems of

equations with such coefficient matrix structures. This allows us to paraUelize the

solution of finite element discretizations of arbitrary and even variable degree with

high efficiency.

The preconditioned conjugate gradient method[23, 24,25,26,27,28] finds the

solution of the system of quations Ax = f (A is assumed to be positive definite sym-

metric) to a specified accuracy e by performing an iteration on the vector x, which has

been appropriately initialized. Apart from simple vector linear algebra, this iteration

involves only the operations x + Ax, .- + Bx, cqy>, and simple vector linear algebra

operations, Here 1? is an approximate inverse of A , which is also assumed to be posi-

tive definite symmetric, and -,y> denotes the inner product of vectors x and y. A

carefully chosen preconditioning operator B can be effective in improving substantially

the convergence rate of the unpreconditioned algorithm (case B=I)[25 ],
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Wc parallclizc the algorithm by exploiting parallelism in every operation of the

itcrati m. All of the vectors in the algorithm are allocated as *LISP pvars. The

communication-intensive operation p + Ap is implemented as a *LISP function which

stores the value of Ap into a pvar up. For our Poisson equation test problem with a

5-point discretization on a rectangle, this function is easily written using the global

memory access functions mentioned in section 3. For simplicity we have chosen the

pre-conditioning openator to be the identity operator. The other communication inten-

sive operations in the conjugate gradient dlgorithm are the several inner products of

vectors which are required. These are trivially implemented using the *sum *LISP

function.

6. Computational Results

As a test problem we have solved a Poisson equation on a rectangle using SOR

relaxation, multignd and conjugate gradient methods. Zero Dtichlet bound.axy condi-

tions were imposed on all sides. Iterations were continued until the initial residual was

reduced by a specified factor, usually .001. Most of the results reported were obtained

on a 16k prmessor CM, with some measurements on 32k processors, However all

indications are that results demonstrated here on 16k and 32k systems scale essentially

l;nearly to the &lk system,

We performed various tests using 4 and 8 virtual processors per physical proces-

sor, with up to 256k virtual processors, Such a configuration provides an excellent test

of the ability to effectively use very fine-grained parallelism. We plot two quantities

that describe system performance, The megaflops attained in a computation is the

average number of millions of floating point operations executed per second. We

count only standard floating point arithmetic operations such as addition and multipli-

cation. A closely related quantity methods is the time per iteration, defined by taking

the total computation time for a solution and dividing it by ttw number of iterations
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used. The grid size label on the following graphs denotes the number of grid points in

each dimension.

6.1. Relaxation

In Figure 1 we present the results for solution of the quations using straight SOR

relaxation. The relaxation parameter co = .8 for successive over-relaxation in Jacobi

iteration has been used. Two cuwes are presented in Figure 1, the shorter one is for a

16k processor machine with 1 virtual processor per physical processor, while the

second cume is for a 32k processor machine with 8 vtiual processors per physical

processor. The peak rate of 52 M.fhps obtained in the latter case, corresponds to about

104 Mflops for a full 64k processor Connection Machine. Relaxation pdormance

improves rapidly with grid size, until it reaches its optimal value with a grid which

fills the virtual processor uctwork.

The relaxation results in Figure 1 involved only nearest neighbor communication

patterns. Multigrid requires relaxation on coarser grid levels, where commur,ication

over substantially longer distances is required. We measure the effects of long range

communication in Figure 2, where we plot time ~r SOR relaxation versus the inter-

processor distance involved. A series of grids was used each of which had the same

number of points, but with the distance between grid-points, which we refer to as the

nearest neighbor distance, successively increasing. We used 32 different nearest

neighbor distances. As mentioned previously, there are two distinct communication

facilities on the CM - the rectangular NEWS grid and the hypercube Router network,

Each of the relaxation tests was performed using whichever communication method

was faster. The flat Ia!er part of the curve in Figure 2 indicates the remarkable fact

that hypercube communication on the CM is essentially independent of distance.
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6.2. Muitigrid Results

All multigrid solutions were obtained using V-cycles, with 3 modified Jacobi

relaxations per grid level. The coarsest grid level was treated identically to the other

levels, In Figure 3 we present measurements of multigrid performance on a 16k pro-

cessor machine. All computations were on a 112x i 12 grid which allows for even

sub-divisions down to 5 levels. The curve in Figure 3 shows the time required for the

complete multignd solution as a function of tlw number of levels used in solution, In

standard multigrid fashion the solution time &ops rapidly as the number of grid levels

increases. One might conclude that mukigrid is performing well on the CM. This is

not in fact true as is borne out by the bar than in Figure 3 which represents megaflops

attained in multigrid solution as a function of the number of levels used. Here one

sees that the maximum performance of over 19 Mflops when only one level is used

(i,e, straight relaxation), drops rapidly to jlst over 3 Mflops when 5 levels are used.

TO understand this behavior, we note that in the multi-level cases most processors

are sitting idle much of the time, thus diminishing the ability to use available

megaflops. Even on the highest level grid only 75910of the available processors are in

use. On a fifth-level grid, only 49 of the available 16k processors are active. Yet the

idgorithm spends the same amount of time on such a grid as it does on the finest grid

since the CM is an SIMD machine, It is actually remarkable that megaflop: rates do

not decay even more severely than indicated, Another feature of Figure, 3 is the rather

sharp drop in performance between level 1 and level 2, This is explained by the fact

thi.tt in going from a 1-level problem (relaxtition) to 2 levels a variety of overheads arc

incurred, including residual comput:~tions and coarse-to-fine grid transfers,

WC conclude thtit stundard multigrid as implemented here is not a particularly

good algtwithm for u mtissivcly piiriillcl machine such us the Connection Machine’,

1, ?his [)bscrviitlot) hus prompted further research into piuullcl multigrid idgorithms, and hii~
resulted in u ncw CIUSS ()! multiple grid algorithms with mu(,h hcttcr tt~c~iltlops rntm, sce[29],
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6.3. Conjugate Gradient Performance

Conjugate gradient performance is much more satisfactory than for multigrid

because all processors may be kept busy most of the time, with the exception that dur-

ing evaluation of the many inner products required by conjugate grddient most prows-

sors are inactive. This leads to a reduction in attained megaflops as compared to

relaxation, but overall performance is still quite satisfactory, being in the region of 80

Mflops for a full 64k machine.

We present the results for conjugate gradient solution in Figure 4, where again we

plct megaflops as a function of grid size, There are three curves, corresponding

respectively to the cases (i) 16k virtual processors on 16k physical processors, (ii) 64k

virtual processors on 16k physical processors and (iii) 256k virtual processors on 32k

physical processors. Note in particular the relationship of the fit two curves, The

top point on these two cumes both correspond to computations on 16kphysicaf proces-

sors in which all processors are in use - in the fist case computing with 16k grid

points, and in the other case with 64k grid points. We see that higher mega.ftops are

attained by using vitiual processors. With virtual procemors,

processor communication is occurring within a single physical

external communication overhead is lower,

much of the inter-

processor and thus
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